A Membership-based Multi-dimension Hierarchical Deep Neural Network Approach for Fault Diagnosis

نویسندگان

  • Liangliang Li
  • Guilan Dai
  • Yong Zhang
چکیده

Accurate fault prognosis of machine component is important to maintain industry operation system. Faults analysis can be very helpful in fault early warning and reducing maintenance cost. The goal of our work is to design an integrated approach of machine faults analysis. A method widely used is Fuzzy Neural Networks (FNNs), but such method lacks of flexibility. We present a Membership-based Multi-dimension Hierarchical (MMH) neural network model to jointly include new feature selection approaches and generalized membership operators. MMH model is an adaptive model that employs modified KPCA and Back Propagation algorithm respectively. By introducing optimized KPCA we can extract features of higher importance that are appropriate for fault diagnosis. Our prediction model is inspired by the traditional fixed membership. In our approach, an observing value will be segmented into multiple dimensions where each dimension captures deep structural information in the network. The transformation is updated by back propagation. The proposed approach takes advantage of membership thinking and benefits from large learning capacity of deep neural networks (DNNs). This is aiming to take advantage of membership thinking and neural network deep learning abilities. Experimental results on public datasets demonstrate the superiority of our model that has the character of faster convergence, which also improving the accuracy by an average of 5% for fault prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017